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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1872

OBSERVATIONS ON THE ROLE OF NONLINEARITY IN

RANDOM VIBRATION OF STRUCTURES*

By Richard H. Lyon

SUMMARY

The effects of nonlinearity in several clamped-clamped beam vibration prob-

lems are reviewed. Possible effects are: Jump or instability phenomena,

amplitude limiting effects, and distortion of probability densities. Studies of

prototype panel-frame structures show similar behavior. The necessity for ex-

tending these efforts to built-up structures is emphasized. Also, estimates for

the onset on nonlinearity based on two simple models are made to show how one can

be guided in experimental design by quantitative-empirical considerations.

Some theoretical techniques are appraised for their applicability to the

structures problem. In particular, two approximation methods are singled out

for detailed comment. Finally, the possibilities of a more creative use of

experimental analysis and a closer tie between theoretical and experimental

effort in structures research are explored.

*This paper was originally prepared as part of a symposium on "The Response of

Nonlinear Systems to Random Excitation," which was held during Session V at the

64th Meeting of the Acoustical Society of America, Seattle, Washington,

November 7-10, 1962. As presented, the title of the paper was "Empirical

Evidence for Nonlinearity and Directions for Future Work." An abstract of the

paper may be found in the November 1962 issue of the Journal of the Acoustical

Society of America. For the present publication, the paper has been rewritten

and some of the discussions have been expanded.
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I. INTRODUCTION

The problem of nonlinearity in the random vibration of

structures has attracted much attention in recent years.

Experimentalists have discovered many forms of anomalous

behavior in random vibration testing and theoreticians have

indicated that structures might be an important area for appli-

cation of their theories. In this paper, we shall review some

experimental studies of simple prototype structures and make

observations on some theoretical methods which have been used

and others which appear promising.

The field of nonlinear random vibration has a great charm,

both from the theoretical and experimental points of view. The

conceptual framework of probability theory, coupled with dynami-

cal equations of nonlinear motion offers an almost unlimited

scope of challenging problems to the analyst, whether his in-

terests lie in the generation of existence and uniqueness proofs

or in obtaining solutions for the response moments, probability

density, stability criteria, etc. For the experimentalist also,

there is a surprise around every corner. As excitation levels

and spectra are changed, the response can become unstable,

change its spectrum, spatial distribution, etc. One almost

never quite knows what to expect.

This richness alone, of course, is reason enough for many

to invest their talents in these studies. Others may be
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motivated by the possible applicability of their results to

structures, fluid dynamics, control theory, etc. In this re-

port, we shall concentrate on applications to structures. It

is worthwhile, therefore, to try to form answers to the follow-

ing questions:

I) How widespread is the problem of nonlinearity in real

structures?

2) Which available theoretical techniques appear most

adequate or promising for application to the struc-

tures problem?

3) What is the proper role of the experiment in study-

ing nonlinear response of structures?

We shall not answer any of these questions here as fully

as we would like. We shall find that the clues are incomplete,

and a fair degree of Judgment and educated (?) guess will be

involved in the partial answers we give. The paper will there-

fore have a stronger editorial flavor than some would prefer.

We hope it will stimulate many readers to turn detective and

uncover additional evidence on the nature of the crime.

Our plan for the paper is as follows. We begin by show-

ing the variety of ways nonlinearity can manifest itself

experimentally in a very simple structure, the clamped beam.
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We do this by reviewing several experiments on this system.

We then review some studies of prototype structures with

particular emphasis on the implications the results may

have for real structures. Then we indicate how estimates

may be made of the onset of nonlinear behavior in structures

when one has a general idea of the form nonlinearity may take.

Then, we review some theoretical results and methods which

appear promising, and finally, we suggest that a greater role

of the experiment in the analysis of nonlinear behavior is

possible.
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II. EFFECTS OF NONLINEARITY IN LABORATORY STUDIES

Nonlinearity as an experimental quality may be broadly

described as a lack of proportionality between excitation

and response. This may manifest itself in many ways since

the response has many descriptions and various parts of the

description may show nonlinarity to varying degrees. In

this section we show with experimental records how nonlinearity

affects rms response, stability, and probability densities.

A system which has been widely studied is the clamped-

clamped beam with axial restraint. The transverse deflection

with axial restraint causes a membrane strain in the beam which

adds to the restoring bending strain, resulting in a hardening

type of stiffness nonlinearity in the displacement response.

Since the membrane strain is an even function of the displace-

ment, it causes a different form of nonlinearity in the measured

strain at any point. Displacement statistics and strain

statistics for this system are therefore not the same, but

our purpose here is merely to show the effects of nonlinearity,

and for this, either will suffice.

In his studies of the first mode strain response of a

beam, P. W. Smith, Jr. (ref. l) used the configuration shown

in Figure 1. The beam was mounted in the side wall of an

acoustic duct and excited by an intense monochromatic sound



wave. In Figure 2 we show the results of this experiment.

One notes the typical nonlinear response curve characteristic

of a hard spring behavior - the "jumps" in amplitude tracing

out a hysteresis type of curve, and a broadening of the loop as

the excitation amplitude is increased. Finally, in Figure 3,

the strain at resonance versus SPL shows the amplitude limit-

ing effects of the stiffening system.

A system very much like this was studied by Heckl (ref. 2),

but his excitation was narrow band noise rather than a pure tone.

A diagram of his beam is shown in Figure 4. It was excited

mechanically with an attached coil and the vibration sensed

with an accelerometer. The low amplitude first mode resonance

was at 75 cps with a quality factor (Q) of 7. The excitation was

filtered noise of 8% bandwidth, slowly swept through the resonance

region of the first mode. The low level response is shown in

Figure 5a, indicating a general rise in response near resonance.

As the excitation is increased, however, we see in Figure 5b a

tendency for the rms level to become unstable in the 76-82 cps

range, the oscillator apparently making transitions between two

metastable rms levels of response. This could be heard clearly.

Unlike the pure tone response, however, there was no evidence that

the pattern of response differed depending on the past history

of excitation. Apparently for noise response, an "equilibrium

instability" is achieved, the pattern changing uniformly as the

enter frequency of excitation is changed.



Finally, an alteration in the probability distribution

of strain with increased excitation has been studied by Smith,

Smits, and Lambert (ref. 3). A diagram of their bar is shown

in Figure 6. In order to eliminate damping at the clamps, the

bar and its supports were cut out of a single block of aluminum.

The strain at the center of the beam was measured and processed

to yield probability densities for the maxima and minima of total

strain, including both bending and membrane contributions. The

distribution of maxima is shown in Figure 7. We note that it

departs from the theoretical Rayleigh distribution, having a

higher probability of larger maxima. This is due to the in-

phase addition of the membrane and bending strains. The dis-

tribution of strain minima is shown in Figure 8. Theoretically

there is a limiting negative strain, and the experimental data

tend to support this. The nonlinearity is clearly evident

through the non-Rayleigh form of the distribution and the lack

of symmetry with the distribution of maxima.

In addition to the nonlinear effects described, there are

others of equal importance. A change in spatial distribution of

motion was noted by Smith (ref. I), and changes in the frequency

spectrum of response must also occur. It would appear, therefore,

that there are several tests which can be applied to detect non-

linearity. Unfortunately, when one tries to apply them to real

structures in a field situation, difficulties may arise in the

interpretations. In the following section we shall indicate how

some prototype structures have been examined for nonlinear behavior.



7

III. NONLINEAR BEHAVIOR OF PROTOTYPE STRUCTURES

As we have seen, it is not very difficult to obtain

nonlinear behavior in dynamical systems. It is common

knowledge among test and environmental engineers that

structures and components can display unexpected behavior

in a test environment, and frequently this behavior is

described as arising from "nonlinearity." There are also

simple examples of real life random vibrations which have

obvious nonlinearities. An important class of these concerns

vibration limiting effects, such as mount bottoming, relay

chatter, window rattling, etc. Experience with this type of

nonlinear behavior is so common that it is perhaps not neces-

sary to document it. Since it is readily detected and normally

represents a serious malfunction of the system, design efforts are

aimed at preventing such behavior. The dynamical nonlinearities

of panel-frame structures are not so dramatic in their effects,

and for this reason several investigators have tested prototype

structures for more detailed studies of response behavior.

An example of this is the nonlinear behavior of flat and

curved panels studied by Lassiter, Hess, and Hubbard (ref. 4).

These panels, which are shown in Figure 9, were fastened at

their edges in such a way as to inhibit in-plane motion and

exposed to siren and turbojet noise. The pure tone response



(primarily first mode) is shown in Figure I0 for the flat

panel and again it shows the characteristic "hard-spring"

behavior. In Figure ii, we note that the curved panel

shows "soft-sprlng" behavior, probably something like an

"oil canning" effect. The strain response of the flat

panel to Jet noise is shown in Figure 12. The response

limiting effect of the membrane stresses is evident. There

seems little doubt that these p_els are exhibiting non-

linear response under excitation amplitudes of engineering

interest.

If one may presume that the work we have been describing

has been carried out in order to understand how real structures

vibrate, then it is appropriate to inquire whether similar pan-

els mounted in real aircraft structures would display a similar

sort of nonlinearity. One can only decide this on the basis of

field data for tests of real structures. If one finds that in

fact real structures display no nonlinearity, then the goal of

the laboratory setup should be to test the panels in such a

way that they vibrate linearly; cr if the field test displays

nonlinearity, then the test should seek to reproduce the same

form of nonlinearity.

It becomes crucial, therefore, to sort out types of non-

linear behavior in field data. This is by no means an easy

task. If we consider the ways in which nonlinearity was



detected in Section II, we find that field conditions make

them more difficult to apply. One possibility is to measure

the membrane stresses in the panel, since these indicate

whether a stiffness nonlinearity may occur. Such a measure-

ment has been made by Freynik (ref. 5) for glass panels ex-

cited by noise from a blowdown tunnel. Freynik's test window

is shown in Figure 13. It was mounted in its frame with putty

and in a test cubicle to shield one side from the noise. In

a third octave band centered at the fundamental resonance of

the panel-cavity combination, a 20 db increase in acoustic

excitation resulted in an increase in only 9.1 db of bending

strain and a 20 db increase in membrane strain (the apparent

proportionality between sound pressure and membrane strain

is presumably fortuitous). The response-excitation relation

is shown in Figure 14. Again, the amplitude limiting effects

of membrane strain are apparent.

9
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IV. ESTIMATING THE ONSET OF NONLINEAR BEHAVIOR

There is ample evidence that nonlinearity can be significant

in the vibration of laboratory and prototype structures. Un-

fortunately, there is almost a complete absence of evidence for

nonlinear response of built-up structures in either natural or

artificial environments. There should be measurements made of

such structures, and perhaps the new sonic fatigue facilities at

Langley Research Center and the Aeronautical Systems Division will

provide data along these directions. In the meantime, one can make

estimates of the levels required to produce significant amounts of

nonlinearity based on conceptual models of the causes of the non-

linearity. In this section, we consider the consequences of two

models of nonlinearity; membrane stress effects and slip damping.

Both types of nonlinearity have been discussed as potentially

significant in panel response.

Of course, there is a sense in which there is no problem in

deciding whether a panel vibrates nonlinearly, since in detail

all panels are nonlinear. The key point for the environmental or

structures engineer, however, is whether or not linear theory can

estimate response levels. In order for nonlinearity to be signifi-

cant, the alterations in response which it produces must rival in

amplitude the uncertainty in the linear predictions which under

the present state of the art, may be considerable.
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The vibration of a flat plate with fixed edges produces

a time average membrane strain e given by

= _T2/2S , (4.1)6

where S is the panel area and x is the transverse displacement.

In order to estimate e we note the empirical result that the

skin vibration of aircraft and spacecraft boosters is approxi-

mately 20 db above mass law (ref. 6), i.e.

a2/p2 = lO0/p2h 2 (4.2)

where a is the acceleration, p is the sound pressure at the

surface, and pph is the surface density of the panel. This

response is generally fairly uniform in the first three octave

bands above 200 cps.

Assuming a uniform reverberant vibrational field with

this spectrum, we compute the required sound pressure to

produce a membrane restoring force equal to the bending forces.

The result of this calculation is

= 16p_h4fl4 = 163 db re .0002 dynes/cm 2, (4.3)

when fl (lower frequency cutoff) is 200 cps, pp = 2.7 gm/cm 3

(aluminum) and h = 0.25 cm (typical value of spacecraft skin thick-

ness). Typical overall sound levels for a large current missile

in the tank areas is 140 db, and about 155 db in the engine com-

partment. We would very likely guess that membrane stiffness
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nonlinearity is not a serious factor in its response. If we

apply these estimates to the aircraft skin, which is normally

more of the order of 0.08 cm in thickness, then the estimate

becomes 143 db. This is again higher than the acoustic levels

normally present on the surface of aircraft by about I0 db.

In composite structures of panels and frames held to-

gether by rivets, the measured damping is usually higher than

that which one would get from hysteretic material damping alone.

It has been postulated, therefore, by Ungar (ref. 7)and Mead

(ref. 8), among others, that the damping is associated with

contact surfaces near the rivets_ Mead (ref. 8) has measured

the damping of a riveted Joint and reported the result shown

in Figure 15. There is clearly a transition to a nonlinear

damping at about one poundal of rivet loading.

One does not know, at this point, the cause of this transi-

tion but we may expect it has something to do with the relative

magnitude of the surface motions and the size of the surface

irregularities. For the surfaces usually encountered, the ir-

regularities (asperities) are of the order of one micron. The

surface motions are estimated from the mean square bending strain

at the panel surface, which is

c_



where c_ is the longitudinal velocity in the panel and A(_)

is the spectral density of the mean square acceleration of

a reverberant vibrational field.

We again assume a constant acceleration over 3 octave

bands above 200 cps, with vibration levels 20 db above mass

law. The mean square bending strain then is

^-'_- 2 2 h 2= zp /flC  p (4.5)

For an SPL of 126 db, the rms bending strain of an .032"

aluminum panel is 4 x 10 -4 If the dimension of the Joint is

of the order of centimeters, then surface displacements of the

order of microns will be achieved at this SPL. Based on our

rather uncertain hypothesis that this is the source of non-

linearity, damping nonlinearity in aircraft would appear to

have an onset some 20 db below the stiffness nonlinearity.

From the estimates concerning these particular structures,

we might conclude that while damping nonlinearity is a possi-

bility, the chances of stiffness nonlinearity are more remote.

The point, however, is not to draw precise conclusions from

our estimates but to indicate how estimates can be made to

tuide us in deciding which forms of nonlinearity may occur

at acoustic levels of interest. Subsequently, experiments

should be designed to enhance the particular aspect of non-

linear behavior to be examined.

13
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V. TIIZORET!CAL TEC_IQUES APPLiCAELE TO STRUCTURESPROBLEI_

The requirements for a good theo_j of nonlinear structural

response to noise are the same as those for a good linear theory.

Using it, one should be able to predict the frequency and spatial

distributions of strains, accelerations, deflections, etc. to an

accuracy compatible with the uses to be made of the information,

and the _uount of effort available for the calculations.

In addition, it may be nece_sary for the theory to predict

probability densities and other higher order statistics of the

response. It should do all these things with the minim_n use

of empiricism on one hand and intricate and detailed computa-

tions on the other. It must contain as a part of its central

structure a recognition of the complexity and multiple mode

behavior of real structures. It should, in short, be eloquent

in its simplicity and fecund in its interpretations.

The major theoretical emphasis until the present has been

on the tuo degree of freedom oscillator which describes the mo-

tion of one mode of a linear structure. [We note here the un-

fortunate engineering usage of the term "single degree of freedom"

system for a mode of vibration. This nomenclature should be

avoided.] There is no need to recount here in detail the

theoretical achievements except to note that some first

order probability densities and moments of the response have
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been computed. One of the important unsolved problems which

remain is the calculation of the spectra of response, which

is related to the solution of the nonstationary statistics

of the oscillator.

The usefulness of a single mode model in nonlinear vi-

brations probably depends on the mode distribution in fre-

quency space and the nonlinear mechanism. A mass sitting

on a (nonlinear) mount that hardens, or perhaps bottoms,

does not have its dynamical description changed by the

nonlinear action. A beam, on the other hand, may have a

predominant mode which "becomes nonlinear" as the amplitude

of response increases. One may find, as did Smith (ref. 1),

that a combination of nonlinear damping and resistance is

necessary to explain the observed response. Smith also ob-

served, however, that the mode shape appeared to change as

amplitude was increased (ref. I). Under these circumstances

the meaning of a mode of vibration becomes rather hazy.

For structural problems, a single mode description is

probably inadequate, and there have been only very limited

results in multimode analysis. Ariaratnam (ref. 9) has been

able to compute the joint probability density of velocity and

displacement for two stiffness coupled oscillators with non-

linearity in the stiffness, excited by white noise generators.

He was able to get solutions for ratios of excitation spectral

density to damping corresponding to thermal equilibrium, and

his probability density is equivalent to the Boltzmann distribution
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(ref. i0). It is possible to obtain these densities for any

number of modes with an arbitrary amount of stiffness non-

linearity, if the ratio of noise spectral density to damping

for each mode is the same, which is analagous to thermal

equilibrium. No exact solutions have been found for unequal

ratios nor has anyone found exact expressions for the densities

when resistance and mass elements are nonlinear.

If we could postulate a panel-frame structure with stiff-

ness nonlinearity only, then the "equilibrium" or Boltzmann

density would result in an acceleration spectrum for the

panel in octave bands rising at 9 db/octave. This is be-

cause the number of structural modes doubles in each octave

band and each mode has the same energy and hence the same

velocity. This kind of acceleration spectrum is not usually

observed for these structures and we conclude that the "thermal

equilibrium" spectrum is not characteristic of real structures.

Considering then the restrictions on the usefulness of

available solutions and the very limited number of available

exact solutions of the Fokker-Planck equation, it would appear

that there is little hope of progress in this direction. The

development of approximate techniques in two different areas

suggests theoretical approaches which may be fruitful. One

of these is a study due to Daniels of the use of saddlepoint

methods for the approximate solution of certain difference-

differential equations to which the Fokker-Planck equation is
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closely related (refs. Ii and 12). The second development

which deals directly with moments of the nonlinear equations

of motion has been put forward by Kraichnan (refs. 13 and 14).

In this context, we can only outline these approaches,

but that is perhaps sufficient to indicate why we think they

are useful. The processes studied by Daniels are univariate,

so we cannot apply them to the two degree of freedom oscillator.

Consider, however, the Fokker-Planck equation

mCx)¢ : (5.13i + _x
_x

which would govern the response density _ of a mass-nonlinear

dashpot system under white noise excitation. The system is

known to have the configuration x : _ at t Q O. If the Laplace

transform of _ is P(x,s), then defining L = SnP, one can form a

nonlinear differential equation for L. In the spirit of the

WKBJ (ref. 15) method, Daniels assumes that _2L/_x2 may oe

neglected compared to _L/_x and its powers. Solving for _L/_x,

and integrating to find the solution, one has

XlmL- = ,_ (w) ± Vm2(w) + 2s dw (5.2)

The two branches must be chosen for proper behavior of the

density for the separate regions x _ 6. The Laplace transform
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of _ is thus reduced to quadratures. The inversion integral is

therefore

¢(x,t) = i j exp[L+- + st] ds. (5 3)
2_i

Danie!s suggests that this may be solved by the method of

steepest descents (ref. 16).

by

The saddlepoint _o(X, tl_) is given

+ x

dw , (5.4)
t = _L_ = $ _m2(w)+2So

and the formal saddlepoint solution to (5.3) is

-1/2

_(x,t) = 2v _S-_o ] exp[L-(s o) + tSo] • (5.5)

It would be idle, of course, to pretend that this formal answer

is sufficient. One must proceed to find the form of s and to
o

verify that the approximations are reasonable. In addition,

the method should be extended to more variables. Neverthe-

less, solutions are possible with this approach which have

not been achieved in other ways. It warrants further study.

Kraichnan's "method of stochastic models" has been applied

with success to the problem of isotropic turbulence (in that he

was able to get a solution for the energy spectrum). Basically

his approach is as follo_Js. He _:rites the coupled nonlinear

equations of motion for tl_e degrees of freedom of the ojo__oem.
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For a turbulence field these are the spatial Fourier amplitudes,

for a nonlinear oscillator they are the spectral amplitudes in

frequency space. The nonlinear interaction terms are replaced

by statistical interactions of the mode with an infinite set

of other modes. The statistics of the interaction terms are

evaluated by making certain assumptions regarding sources of

coherence in the interacting modes (ref. 14).

By follo_ing this through, one finds that the "zero'th

order approximation" is just the method of equivalent linear-

ization. This is reassuring, since it is not only a well-known

method, but it is also a very useful one. Moreover, Kraichnan's

method tells one how to go on beyond equivalent linearization -

it is not a small step3 but the procedures are defined. Follow-

ing this through, for examplej for the nonlinear oscillator should

produce results for the spectrum changes due to nonlinearity be-

yond the mere shift in resonance frequency which one gets from

equivalent linearization.

Consider the nonlinear oscillator with a hardening spring

" ° q3q = 2c_r1 + _2 (q + ) = f(t)
0

(5.6)

where f(t) is a random noise source of known spectral density.

The response and excitation are expanded into their complex
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Fourier amplitudes Nn and Fn over the interval (-T,T).

Equation (5.6) then becomes the nonlinear algebraic

relation

where

¢nNn + c°2 Z N N N = Fn
o pqr

p+ q+r=n

o_2 2ia_ n o3Cn _" o - - n "

(5.7)

(5.s)

The mean square of _ is

7 2Y l ml2
I

and thus Y and
m

-2 £i_ Y
i m

(5.9)

Dm _ ]Fm[_ (5.1o)

with N* and averaging.
n

are the po_Jer spectra of _ and f respectively.

We solve (5.7) for the power spectrum of _ by multiplying

The result is

CnYn + OO2o _.. NpNqNrN _ = _ (5 .11)

p+q+r=n

It is at this point that one applies Kraichnan's approximations

in evaluating the triple sum. The simplest assumption or "zero'th

order approximation" is that the n th amplitude is interacting with
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a completely independent set of amplitudes so the only possi-

bility for nonzero averages occurs whenever

p = -q, r = n

p = -r, q = n

p = n, q = -r.

Under these circumstances, the solution of (5.11) is

Y
n

7
n n (5.12)

which is the spectral form of the equivalent linearization

result (ref. 17).

In seeking a higher approximation, it is necessa_j to look

at triad interactions N N_N such that _ + _+ 7 = n. These in-

teractions are assumed to behave like perturbations in the ex-

citation of the n th mode. They therefore begin to affect the

excitation as illustrated by Eq. (5.12). The response function

is also altered, however, by the interaction. We shall not spell

out the development of the relations; they lead to complicated

nonlinear algebraic equations for the response spectrum. As

in the case of Daniels method, we do not find complete answers

available, but the methods suggest the usefulness of further de-

velopment.
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VI. THE USES OF THE EXPERIr,_NT IN STRUCTURAL ANALYSIS

The discussion of the previous section has centered on

theoretical methods of structur_ analysis. It is doubtful,

however, that any purely theoretical approach will generate

engineering answers to the problems of structural response.

The classes of structures are diverse, they contain very

many degrees of freedom, and the methods of construction

are such that the problem in a real sense defies description.

The problem is even more fundamental, however, because even

if one could define the structure through its dynamical

equations and boundary conditions, the answers would be

so very complex that no one could take the time or muster

the interest to read them.

In viewing such a situation, paradoxically, the acousti-

cian takes heart, for he is familiar with the successes of

room acoustics, including impact noise and transmission of

sound through structures which are systems every bit as

complicated and ill defined as the aerospace structures we

have been discussing. The success of room acoustics has

come from the idea of describing the dynamics in a statisti-

cal way and being willing to accept answers which are averages

of the sin_Itaneous effects of ve_, many modes. In addition,

there has been a willingness from the beginning to use ex-

perimental analysis in a creative way to sort out the really
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significant parameters in the response, to test simplify-

ing assumptions about the state of the motion, and to

check in a practical way the utility of the simple theories

which have been generated in this process.

This use of experimental analysis as a partner in the

development of a theory rather than a simple check on one's

ability to model his equations with a dynamical system is

very much needed in present day structural analysis. There

has been an unfortunate tendency in some contemporary centers

of engineering science to make these separate functions. It is

unfortunate because the very nature of the structures problem

ideally _ould require the same man to do both the theoretical

and the experimental analysis. At the very least there should

be mutually beneficial closely integrated effort between the

theoretician and the experimentalist.

Bolt Berauek and Ne_nan Inc.

Cambridge 3 Massachusetts
December 14, 1962
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